Structural and functional properties of reticulospinal neurons in the early-swimming stage Xenopus embryo.

نویسندگان

  • P van Mier
  • H J ten Donkelaar
چکیده

This study presents direct evidence that in Xenopus laevis embryos ipsi- and contralaterally descending reticulospinal fibers from the caudal brain stem project to the spinal cord, where they directly contact primary motoneurons. At stage 30, occasional contacts between primary motoneurons and descending axons are present. These contacts are possibly already functional since presynaptic vesicles were sometimes observed. Furthermore, the physiological data obtained in this study suggest that reticulospinal neurons in the caudal brain stem are involved in the central generation of early swimming. The first ingrowth of reticulospinal axons was observed in the rostral spinal cord after application of HRP to the caudal brain stem of stage 27/28 embryos. By stage 32, many supraspinal axons could be found in the spinal cord at the level of the 12/13th myotome, near the time of the first rhythmic swimming. Both lamellipodial and varicose growth cones were found. Intracellular recordings from the brain stem and extracellular recordings from the myotomal muscles in curarized embryos around stage 30 revealed neurons in the caudal brain stem which were active during early fictive swimming. After intracellular staining with Lucifer yellow neurons with descending axons were found in the brain-stem reticular formation. These reticulospinal neurons showed "motoneuron-like" phasic activity, producing one spike each swimming cycle. Rhythmically occurring spikes with swimming periodicity were superimposed on a sustained depolarization level of some 5-30 mV. Reticulospinal neurons in the brain stem resemble descending interneurons in the spinal cord by their morphology, projection pattern, and activity during early swimming. Reticulospinal neurons and descending interneurons might therefore form one continuous population of projecting interneurons with a different location but a similar function. In support of this we propose that the embryonic brain-stem reticular formation forms part of the swimming pattern generator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defining the excitatory neurons that drive the locomotor rhythm in a simple vertebrate: insights into the origin of reticulospinal control

Important questions remain about the origin of the excitation that drives locomotion in vertebrates and the roles played by reticulospinal neurons. In young Xenopus tadpoles, paired whole-cell recordings reveal reticulospinal neurons that directly excite swimming circuit neurons in the brainstem and spinal cord. They form part of a column of neurons (dINs) with ipsilateral descending projection...

متن کامل

Development and role of GABA(A) receptor-mediated synaptic potentials during swimming in postembryonic Xenopus laevis tadpoles.

We have investigated the contribution of GABA(A) receptor activation to swimming in Xenopus tadpoles during the first day of postembryonic development. Around the time of hatching stage (37/8), bicuculline (10-50 microM) causes a decrease in swim episode duration and cycle period, suggesting that GABA(A) receptor activation influences embryonic swimming. Twenty-four hours later, at stage 42, GA...

متن کامل

Sensory activation and role of inhibitory reticulospinal neurons that stop swimming in hatchling frog tadpoles.

Activity in neuronal networks underlying locomotion and other rhythmic actions can start and stop in response to specific sensory stimuli. In vertebrate locomotion, some reticulospinal neurons such as Mauthner neurons can initiate activity, but the neurons controlling stopping are not defined. We have studied swimming in tadpoles of the frog, Xenopus, which is started by touching the skin and s...

متن کامل

Sensory initiation of a co‐ordinated motor response: synaptic excitation underlying simple decision‐making

KEY POINTS Deciding whether or how to initiate a motor response to a stimulus can be surprisingly slow and the underlying processes are not well understood. The neuronal circuitry that allows frog tadpoles to swim in response to touch is well characterized and includes excitatory reticulospinal neurons that drive swim circuit neurons. Build-up of excitation to reticulospinal neurons is the key ...

متن کامل

Locomotor rhythm maintenance: electrical coupling among premotor excitatory interneurons in the brainstem and spinal cord of young Xenopus tadpoles

Electrical coupling is important in rhythm generating systems. We examine its role in circuits controlling locomotion in a simple vertebrate model, the young Xenopus tadpole, where the hindbrain and spinal cord excitatory descending interneurons (dINs) that drive and maintain swimming have been characterised. Using simultaneous paired recordings, we show that most dINs are electrically coupled ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 9 1  شماره 

صفحات  -

تاریخ انتشار 1989